Relative Error Prediction via Penalized Regression
نویسندگان
چکیده
منابع مشابه
Relative error prediction via kernel regression smoothers
In this article, we introduce and study local constant and our preferred local linear nonparametric regression estimators when it is appropriate to assess performance in terms of mean squared relative error of prediction. We give asymptotic results for both boundary and non-boundary cases. These are special cases of more general asymptotic results that we provide concerning the estimation of th...
متن کاملPenalized Regression Models with Autoregressive Error Terms
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a ...
متن کاملMarginal longitudinal semiparametric regression via penalized splines.
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achie...
متن کاملThe case-crossover design via penalized regression
BACKGROUND The case-crossover design is an attractive alternative to the classical case-control design which can be used to study the onset of acute events if the risk factors of interest vary in time. By comparing exposures within cases at different time periods, the case-crossover design does not rely on control subjects which can be difficult to acquire. However, using the standard method of...
متن کاملGeneralized Nonparametric Regression via Penalized Likelihood
We consider the asymptotic analysis of penalized likelihood type estimators for generalized non-parametric regression problems in which the target parameter is a vector valued function defined in terms of the conditional distribution of a response given a set of covariates, A variety of examples including ones related to generalized linear models and robust smoothing are covered by the theory. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2015
ISSN: 1225-066X
DOI: 10.5351/kjas.2015.28.6.1103